解决Hash冲突的几种方法

原文地址: https://blog.csdn.net/u012104435/article/details/47951357

开放地址法:

1.线性探测法:ThreadLocalMap

线性再散列法是形式最简单的处理冲突的方法。插入元素时,如果发生冲突,算法会简单的从该槽位置向后循环遍历hash表,直到找到表中的下一个空槽,并将该元素放入该槽中(会导致相同hash值的元素挨在一起和其他hash值对应的槽被占用)。查找元素时,首先散列值所指向的槽,如果没有找到匹配,则继续从该槽遍历hash表,直到:(1)找到相应的元素;(2)找到一个空槽,指示查找的元素不存在,(所以不能随便删除元素);(3)整个hash表遍历完毕(指示该元素不存在并且hash表是满的)

用线性探测法处理冲突,思路清晰,算法简单,但存在下列缺点:
① 处理溢出需另编程序。一般可另外设立一个溢出表,专门用来存放上述哈希表中放不下的记录。此溢出表最简单的结构是顺序表,查找方法可用顺序查找。
② 按上述算法建立起来的哈希表,删除工作非常困难。如果将此元素删除,查找的时会发现空槽,则会认为要找的元素不存在。只能标上已被删除的标记,否则,将会影响以后的查找。
③ 线性探测法很容易产生堆聚现象。所谓堆聚现象,就是存入哈希表的记录在表中连成一片。按照线性探测法处理冲突,如果生成哈希地址的连续序列愈长 ( 即不同关键字值的哈希地址相邻在一起愈长 ) ,则当新的记录加入该表时,与这个序列发生冲突的可能性愈大。因此,哈希地址的较长连续序列比较短连续序列生长得快,这就意味着,一旦出现堆聚 ( 伴随着冲突 ) ,就将引起进一步的堆聚。

2.线性补偿探测法

线性补偿探测法的基本思想是:将线性探测的步长从 1 改为 Q ,即将上述算法中的
hash = (hash + 1) % m 改为:hash = (hash + Q) % m = hash % m + Q % m,而且要求 Q 与 m 是互质的,以便能探测到哈希表中的所有单元。
【例】 PDP-11 小型计算机中的汇编程序所用的符合表,就采用此方法来解决冲突,所用表长 m = 1321 ,选用 Q = 25 。

3.伪随机探测

随机探测的基本思想是:将线性探测的步长从常数改为随机数,即令: hash = (hash + RN) % m ,其中 RN 是一个随机数。在实际程序中应预先用随机数发生器产生一个随机序列,将此序列作为依次探测的步长。这样就能使不同的关键字具有不同的探测次序,从而可以避 免或减少堆聚。基于与线性探测法相同的理由,在线性补偿探测法和随机探测法中,删除一个记录后也要打上删除标记。

拉链法

拉链法 : hashmap

拉链法的优点
与开放定址法相比,拉链法有如下几个优点:
①拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
②由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
③开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
④在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。

拉链法的缺点
 拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。

再散列(双重散列,多重散列)

当发生冲突时,使用第二个、第三个、哈希函数计算地址,直到无冲突时。缺点:计算时间增加。

建立一个公共溢出区

假设哈希函数的值域为[0,m-1],则设向量HashTable[0..m-1]为基本表,另外设立存储空间向量OverTable[0..v]用以存储发生冲突的记录。

打赏
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2015-2023 高行行
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信